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What is a complex system?
it consists of a large number of interacting agents,

it exhibits emergence, that is, a self-organizing 
collective behavior difficult to anticipate from the 
knowledge of agents behavior,

its emergent behavior does not result from the 
existence of a central controller.



Example: Project inspired by the behavior of termites 
gathering wood chips into piles.
http://education.mit.edu/starlogo/

Randomly distributed wood chips (left figure) eventually end up in a single 
pile (right figure).  Density of wood: 0.25, number of termites: 75.



What is a model?

A model is a simplified mathematical representation of a system.

In the actual system many features are likely to be important.

Not all of them, however, should be included in the model.

Only a few relevant features which are thought to play an essential 
role in the interpretation of the observed phenomena should be 
retained.

A simple model, if it captures the key elements of a complex system, 
may elicit highly relevant questions.



First model: K. Nagel and M. Schreckenberg:                    
A Cellular Automaton Model for Freeway Traffic,        
Journal de Physique I 2 2221-2229 (1992)

Review: D. Chowdhury, L. Santen, and A. Schadschneider,                                                                   
Statistical Physics of VehicularTraffic and Some Related 
Systems,                                                                             
Physics Reports 329 199-329 (2000)

Cellular Automaton Models of 
Highway Traffic Flow



Simplest model:
A one-lane highway traffic flow

free-moving phase jammed phasecritical state

At each time step a car (a blue square) either moves to the 
neighboring right cell if, and only if, it is empty (a yellow square) or 
does not move.
Each figure represents 30 time steps for different car densities.

A linear array of cells either occupied (by a car) or empty



This model is formulated in terms ofcellular 
automata. 

The existence of two phases: a free-moving 
phase for a car density less than a critical 
value and a jammed phase for a  car density 
greater than this critical value.

Local jams (sequence of stopped cars) are 
moving backwards.

This very simple model shows:

A cellular automaton is a dynamical system



The previous model is a simplified deterministic version 
of the Nagel-Schreckenberg model. 
It assumes that 
1- car speeds can only take two values: 0 or 1,  and 
2- car drivers always move if they can

If we assume that car speeds take the values

and adopt the moving rule: a car occupying cell i 
and having d empty cells on its right moves, at the 
next time step, to cell

A slightly more general model

0, 1, 2, . . . , vmax

j = i + min(d, vmax)



free-moving phase jammed phase

yellow: empty cell,  red: speed 0, blue: speed 1, green: speed 2 
            color code at time t indicates speed at time t-1              

critical density given by:

Deterministic cellular automaton models of highway traffic flow obey a 
variational principle which states that, for a given car density, the average car 
speed is a non-decreasing function of time.
N. Boccara, On the existence of a variational  principle for deterministic cellular automaton 
models of highway  traffic flow,  
International Journal of Modern Physics C 12 1-16 (2001)

ρc =
1

vmax +1



A phase space S whose elements represent 
possible states of the system;

 time t, which may be discrete or continuous;

and an evolution law, that is, a rule that
allows to determine the state at time t from 
the knowledge of the states at all previous 
times.

What is a dynamical system?

The notion of dynamical system includes 
the following ingredients:



Two examples of dynamical systems:
1- Bulgarian solitaire

For instance, if N = 10 (which corresponds to n = 4), starting from the 
partition  {1,2,7}, we obtain the following sequence: 

                                   {1,3,6}, {2,3,5}, {1,2,3,4}.

A pack of N = n (n+1)/2 cards is divided into k packs of 

cards, where

A move consists in taking exactly one card of each pack and 
forming a new pack. 

By repeating this operation a sufficiently large number of 
times any initial configuration eventually converges to a 

configuration that consists of n packs of, respectively,  
1, 2, . . ., n  cards.

n1, n2, . . . , nk

n1 + n2 + · · · + nk = N



Numbers N of the form n(n+1)/2 are known as triangular numbers. 

What happens if the number of cards is not triangular?  

Since the number of partitions of a finite integer is finite, any initial 
partition leads into a cycle of partitions. For example, if N = 8, starting 
from {8}, we obtain the sequence:

{7, 1}, {6, 2}, {5, 2, 1}, {4, 3, 1 }, {3, 3, 2}, {3, 2, 2, 1}, {4,2,1,1}, {4,3,1}.

For any positive integer N, the convergence towards a cycle, which is of 
length 1 if N is triangular, has been proved by J. Brandt,  Cycles of Partitions, 
Proceedings of the American Mathematical Society 85 483--487 (1982).
 
In the case of a triangular number, it has been shown that the number of 
moves, before the final configuration is reached, is at most equal to n(n-1).

The Bulgarian solitaire is a time-discrete dynamical system.  Its phase 
space consists of all the partitions of the number N.



2- Original Collatz problem

Many iteration problems are simple to state but often intractably hard to solve. 
Probably the most famous one is the so-called 3x+1 problem, also known as the 
Collatz conjecture,which asserts that, starting from any positive integer n, 
repeated iteration of the function f defined by

f(n) =

{
1
2n, if n is even,
1
2(3n + 1), if n is odd,

always returns 1.



f(n) =


2
3n, if n = 0 mod 3,
4
3n− 1

3 , if n = 1 mod 3,
4
3n + 1

3 , if n = 2 mod 3.

f−1(n) =


3
2n, if n = 0 mod 2,
3
4n + 1

4 , if n = 1 mod 4,
3
4n− 1

4 , if n = 3 mod 4.

Its inverse is defined by

The function f is bijective and is, therefore, a permutation of the natural 
numbers. The study of the iterates of f has been called the original Collatz 
problem 
(see L. C. Lagarias,  The 3x+1 Problem and Its Generalizations, 
American Mathematical Monthly  92 3-23 (1985))

Here is a less known conjecture that, like the 3x+1 problem, has not been solved.
Consider the function f defined, for all positive integers, by



If we consider the first natural numbers, we obtain the
following permutation:

1  2  3  4  5  6  7  8  9  
1  3  2  5  7  4  9  11  6  

While some cycles are finite, e.g., (3,2)
or (5,7,9,6,4), it has been conjectured that there exist
infinite cycles. For instance, none of the 250,000 successive
iterates of 8 is equal to 8. This is also the case for 14 and 16.
For this particular dynamical system, the phase space is the set
of all positive integers, and the evolution rule is reversible.



What is a 1D cellular automaton?

the local evolution rule is a map

such that

are, respectively, the left and right radii 
of rule f.

where
r! and rr

s(i, t + 1) = f
(
s(i − r!, t), . . . , s(i + rr, t)

)
,

s(i, t) ∈ Q represents state at

site i ∈ Z and time t ∈ N
Q = {0, 1, . . . , q − 1}

f : Qr!+rr+1 !→ Q



Critical behavior of a cellular 
automaton highway traffic model 

In the deterministic Nagel-Schreckenberg model the 
transition from the free-moving phase to the jammed 
phase may be viewed as second-order phase transition

1- What is the order parameter?
2- What is the symmetry-breaking field?
3- What is the physical quantity characterizing the linear response of       
the order parameter to the symmetry-breaking field?
4- What are the critical exponents?
5- Can we find scaling relations?

N. Boccara and H. Fukś, 
Critical Behavior  of a Cellular Automaton Highway Traffic Model ,
Journal of Physics A: Mathematical and General 33 3407-3415 (2000)



Symmetry considerations

In a standard second-order phase transition, at high 
temperature, the system is in the disordered phase, 
i.e., the phase of higher symmetry.

Below a critical temperature, the system is in the 
ordered phase characterized by a nonzero value of a 
symmetry-breaking order parameter.

The symmetry group of the ordered phase is a subgroup 
of the symmetry group of the disordered phase. 



For the transition from the free-moving phase to the 
jammed phase, the control parameter is the car density.

The average car velocity is exactly given by:

This expression shows that below the critical car 
density:

all cars move at the maximum velocity, while above 
the critical density, the average velocity is less than 
the maximum speed.

< v >= min

(
vmax,

1

ρ
− 1

)

ρc =
1

vmax + 1



Cellular automata modeling one-lane traffic flow are 
number-conserving. 
N. Boccara and H. Fukś, 
Number-conserving  Cellular Automaton Rules ,  
Fundamenta Informaticae  52  1-13 (2002)

Limit sets of number-conserving cellular automaton 
rules have, in most cases, a very simple structure, and 
are reached after a number of time steps of the order 
of the lattice size.

Below the critical density
any configuration in the limit 
set consists of “perfect 
tiles” as shown below:

in a sea of cells in state (e)

(e, e, 2)



Above the critical density
a configuration in the 
limit set consists of a 
mixture of tiles 
containing  cells of type:

(e) (0) (e,1) (e,e,2)

Tiles of type  (0) and  (e,1) found in the limit set 
of the jammed phase are called defective



If in the deterministic 
model we introduce 
random braking, then, 
even at low density, 
some tiles become 
defective which causes 
the average velocity to 
be less than the 
maximum speed

maximum speed: 2
car density: 0.2
braking probability: 0.25

random braking means 
that a driver who could 
move at velocity v has a 
probability p to move at 
velocity v-1



The random braking parameter p can, therefore, be 
viewed as the symmetry-breaking field, and the 
order parameter m, conjugate to that field, is

since

we obtain
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< v >= min
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vmax,

1

ρ
− 1

)

m =

{
0, if ρ < ρc,
ρ−ρc

ρρc
, otherwise.

vmax = 2



Critical exponents
For this particular system, in the vicinity of the 
transition point, the asymptotic behavior is 
characterized by the  exponents β, γ, γ’, and δ 
defined by

Close to the critical point, critical exponents satisfy 
scaling relations. If we assume that m is a 
generalized homogeneous function of p and ρ-ρc ,   
that is,

then

β is exactly equal to 1m ∼ (ρ− ρc)
β

lim
p→0

∂m

∂p
∼

{
(ρc − ρ)γ, if ρ < ρc,

(ρ− ρc)γ ′, if ρ > ρc,

lim
p→0

(
∂m

∂p

)
ρ=ρc

∼ p1/δ

m = |ρ− ρc|β f

(
p

|ρ− ρc|βγ

)
γ′ = γ = (δ − 1)β
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p=0.1
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Numerical simulations

Divergence of ∂m/∂p  at the critical point

Log-Log plot of (m(p)-m(0))/p as a function 
of |ρ-ρc|  for ρ<ρc

Log-Log plot of (m(p)-m(0))/p as a function 
of |ρ-ρc|  for ρ>ρc
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fit

Log-Log plot of m as a function 
of p for ρ=ρc

Numerical simulations show that

γ ≃ γ’ ≃ 1  and  δ  ≃  2
These critical exponents satisfy the 
      scaling relation   γ = (δ-1)β 



These results can also be  obtained using an approximate 
technique, called local structure theory, at order 3 going 
beyond the mean-field approximation (order 0).

H. A. Gutowitz H. A.,  J. D. Victor J. D., and B. W. Knight 
Local Structure Theory for CellularAutomata, 
Physica D 28 18--48 (1987)



THE END


